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On axisymmetric rotating gravity currents:
two-layer shallow-water and numerical solutions
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Axisymmetric gravity currents released from behind a lock over a solid horizontal
bottom in a system rotating about a vertical axis are investigated. The major
parameters are C, the ratio of Coriolis to inertia forces, and H , the ratio of the
total height of the ambient fluid into which propagation occurs to the initial height of
the dense fluid inside the lock. We focus attention on the small C, almost inviscid case
in which a significant radius of propagation is obtained. A two-layer shallow-water
inviscid approximation is developed and it is shown that the angular velocities in
the upper and lower layers are coupled by simple relationships which can be used
to simplify both the time-dependent and the steady-state lens solutions. However,
the major features predicted by the two-layer model differ only slightly from these
obtained with a one-layer model. Finite-difference solutions of the full Navier–Stokes
equations are also presented and compared with the shallow-water approximations.

1. Introduction
Gravity currents are formed by a fluid flowing primarily horizontally under the

influence of gravity into another fluid of a different density. The typical problem
considers the instantaneous release of a constant volume of dense fluid from behind
a lock into a large reservoir of ambient fluid, above an impermeable horizontal
boundary. Currents may propagate in either a two-dimensional (rectangular) or
axisymmetric (cylindrical) geometry configuration. The axisymmetric current is more
complex and less understood than the rectangular counterpart. Another important
effect which accompanies the axisymmetric current in many practical industrial and
environmental circumstances is the rotation of the frame in which propagation takes
place. For example, Flierl (1979) and Csanady (1979) suggested Coriolis-buoyancy
balance models for explaining the behaviour of typical Gulf Stream ‘rings’ of radius
and thickness of about 100 km and 1 km, respectively. On the other hand, related
laboratory experiments concern ‘eddies’ whose magnitude is several centimetres in
the common case (Griffiths & Linden 1981; Nof & Simon 1987) and up to several
metres in special facilities like the Coriolis LEGI at Grenoble (Hallworth, Huppert
& Ungarish 2001).

The purpose of our investigation is to extend the knowledge about the motion
of high-Reynolds-number homogeneous gravity currents of finite volume in an
axisymmetric geometry, in particular with background rotation. We shall use
both shallow-water approximations and numerical solutions of the Navier–Stokes
equations.

Analytical investigations of axisymmetric gravity currents of fixed volume in a
rotating frame have been performed by Ungarish & Huppert (1998) for the one-layer



38 M. Ungarish and T. Zemach

g

h
r

z

H

u

h0

r0

Ω

ρ2

ρ1

rN (t)

Figure 1. Schematic description of the system: z is the axis of symmetry. The grey region
sketches the current at t = 0. The initial densities in the ambient and dense fluid are ρa (= ρ2)
and ρd (= ρ1).

shallow-water model. For this model, the appropriately defined Reynolds number is
assumed to be large and hence viscous effects need not be incorporated, the shallow-
water approximation is used to simplify the equations of motion and the purely
hydrostatic balance (i.e. no relative motion of the fluid in the rotating system) is
assumed for the ambient fluid domain. In the present work, we extend the analysis
to a two-layer model. This means that the assumption of pure hydrostatic balance in
the ambient fluid is relaxed.

The system under consideration is sketched in figure 1: a layer of ambient fluid
of density ρa above a solid horizontal surface z = 0, is in solid-body rotation with
angular velocity Ω about the vertical axis of symmetry. The upper boundary is open
to the atmosphere. At time t = 0, a fixed-volume of co-rotating denser fluid of density
ρd , initially in a cylinder of height h0 and radius r0, is released into the ambient fluid.
We denote by H the ratio of the total height of the fluids in the system to h0 of
the lock (we neglect the small curvature of the free surface, as justified later); we are
interested in cases with H � 1, i.e. the dense fluid behind the lock is, initially and
after release, shallower than the ambient fluid.

An axisymmetric current starts to spread radially at t = 0. The driving mechanism
for propagation is provided by the pressure head at the nose of the dense fluid and
hence the characteristic radial velocity is (g′h0)

1/2; here, the reduced gravity is defined
by

g′ = ε g, (1.1)

where

ε =
ρd

ρa

− 1. (1.2)

On the other hand, in a rotating system the gravity-driven propagation is modified and
eventually suppressed by the Coriolis-centrifugal effects, reflected by the dimensionless
parameter

C =
Ωr0

(g′h0)1/2
=

1

Ro
, (1.3)

which expresses the ratio of the azimuthal velocity Ωr0 to the inertial velocity (g′h0)
1/2

and can be defined as the inverse of the formal Rossby number Ro. The Coriolis-
centrifugal effects remain after the decay of the inertial processes. For this reason (i)
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Coriolis effects† may produce significant differences from non-rotating currents even
for very small values of C, and (ii) the dense fluid may attain a quasi-steady lens
shape, dominated by a Coriolis-pressure balance, when the radial velocity decays, in
contrast with non-rotating currents which become dominated by viscous forces at
large times.

Steady lens structures have been studied by Griffiths & Linden (1981), Nof & Simon
(1987), Dewar & Killworth (1990), Choboter & Swaters (2000) and others, mostly for
large values of the parameter C and under the assumption that the ambient fluid is
motionless (in the rotating system). We shall briefly reconsider this topic and present
some improved results.

The propagation of gravity currents is conveniently approximated by the shallow-
water (SW) theory. For the rotating current, only the one-layer model was studied
(see Ungarish & Huppert 1998; Hallworth et al. 2001). The one-layer model assumes
that no motion takes place in the ambient. This assumption can be justified for a
current covered by a relatively very thick layer of ambient, i.e. in the limit H = ∞.
However, this limit is unrealistic in many practical, experimental and computational
circumstances. Our task here is to incorporate the ambient fluid effects into the
modelling of that flow and to understand their major influence. In the SW modelling,
the appropriate equations for the ambient fluid layer must be added to the previously
studied system and the interaction terms between the layers must be reformulated.

For the non-rotating rectangular geometry case, two-layer SW models have been
investigated (see Rottman & Simpson 1983 and Klemp, Rotunno & Skamarock 1994).
A useful conclusion is that the two-layer model in the non-rotating case can be reduced
to the solution of PDEs for only one layer. However, the proper incorporation of the
angular momentum equations in the two-layer model requires a special extension, as
shown later. The simulation of the gravity current motion by the SW formulation
requires, in general, a numerical solution, but the necessary code is obtained by a
relatively modest programming effort, and the typical run takes about 1 CPU min on
a regular workstation. Moreover, the interpretation of the results is simple.

On the other hand, in our code of finite difference numerical solution of the
Navier–Stokes equations (NS approach), the domain of computation is a cylinder of
height H in which both fluids move subject to global boundary conditions. Therefore,
the motion of the ambient is an intrinsic part of this solution. The disadvantage
of this method is the complexity of the necessary code and programming task, the
high computational price (many CPU hours, even on powerful computers), and the
subsequent efforts required to process the detailed resulting data.

The paper is organized as follows. The Navier–Stokes formulation is given in § 2
and the corresponding numerical solution is discussed in § 3. In § 4, the shallow-water
approximations and the appropriate boundary conditions, with emphasis on the two-
layer angular momentum balances, are developed. The steady lens are also discussed.
Results of the time-dependent flow as predicted by the SW and NS approaches are
presented and compared in § 5. Some concluding remarks are made in § 6.

2. Formulation
We use a cylindrical coordinate system rotating with angular velocity Ω about the

vertical axis of symmetry z. The velocity vector corresponding to the coordinates

† For brevity, we mainly use ‘Coriolis’ to refer to the Coriolis and centrifugal effects in the
rotating system.
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{r, θ, z} is denoted by v = {u, v, w}; the (relative) angular velocity is defined by

ω = v/r. (2.1)

We assume axial symmetry.
It is convenient to replace the dimensional variables, denoted here by asterisks,

with dimensionless counterparts, for which no special notation is used, scaled by the
following relationships:

{r∗, z∗, t∗, u∗, v∗, w∗, ω∗, p∗} =

{
r0r, h0z, T t, Uu, Ωr0v,

(
h0

r0

)
Uw, Ωω, ρaU

2p

}
,

(2.2)
where

U = (h0g
′)1/2, T =

r0

(h0g′)1/2
. (2.3)

The dimensional reference quantities are as follows: h0 is the initial height of the
current, r0 its initial radius, Ω is the angular velocity of the system, g′ is the reduced
gravity, U and T are the typical velocity and time of propagation of the front (nose)
in a non-rotating gravity-current problem. The variable p represents the reduced
pressure (in dimensional form, the reduction is by ρa(0.5Ω2r∗2 − gz∗)). The scaling
(2.2)–(2.3) is advantageous in particular for the shallow-water approach to the flow
field; the approximate equations are straightforwardly developed and, more important,
the initial aspect ratio h0/r0 is eliminated from the resulting formulation (see Ungarish
& Huppert 1999).

We introduce the dimensionless density function φ(r, t) defined by

ρ(r, t) = ρa[1 + ε φ(r, t)]. (2.4)

where, again, ρa is the dimensional density of the ambient. We expect 0 � φ � 1, with
φ = 1 in the ‘pure’ dense fluid domain and φ = 0 in the ‘pure’ ambient fluid domain.

The dimensionless governing equations are as follows.
Continuity of volume

∇ · v = 0. (2.5)

Momentum balance in the radial (horizontal), azimuthal and axial (vertical)
directions

Du

Dt
− 2C2v − C2 v2

r
=

1

1 + ε φ

[
−∂p

∂r
+ φε C2r +

1

Re
∇2

cu

]
, (2.6)

Dv

Dt
+

uv

r
+ 2u =

1

1 + ε φ

[
1

Re
∇2

cv

]
, (2.7)

(
h0

r0

)2
Dw

Dt
=

1

1 + ε φ

[
−∂p

∂z
− φ +

1

Re

(
h0

r0

)2

∇2w

]
. (2.8)

Dense component transport

Dφ

Dt
= D∇2φ. (2.9)

We used the notation

∇2f =
1

r

∂

∂r
r
∂f

∂r
+

(
h0

r0

)−2
∂2f

∂z2
, ∇2

cf = ∇2f − f

r2
. (2.10)
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The relevant dimensionless parameters in these equations, in addition to the reduced
density difference ε and the initial aspect ratio h0/r0, are the Coriolis to inertia ratio
parameter

C =
Ωr0

(g′h0)1/2
, (2.11)

the Reynolds number

Re = (g′h0)
1/2r0ρa/µ, (2.12)

and the dimensionless diffusion coefficient D = 1/Pe = 1/(σRe) where Pe and σ are
the Péclet and Schmidt numbers, and µ is the dynamic viscosity, assumed equal in
both fluids.

We are interested in flows with large values of Re, moderately small C, small ε and
very small D. The typical physical value of D is negligibly small (recall that σ � 1 for
saline solutions in water), but here a non-vanishing D is used as an artificial diffusion
coefficient for numerical smoothing.

The parameter C, which typifies the ratio of the Coriolis to inertia terms, may be
regarded as the inverse of a Rossby number, Ro; in this context, a flow field with a
small C means one with a large Ro. The Ekman number can be defined in terms of
the previous parameters as

E =
µ

Ωh2
0 ρa

=

[(
h0

r0

)2

CRe

]−1

, (2.13)

and is assumed small; E1/2 is the typical (dimensionless) thickness of the rotational
horizontal viscous layers which develop after about one revolution of the system.

The parameter (h0/r0) represents the ‘shallowness’ of the current, and is assumed
small. In the axially symmetric lock-release problem considered here, two more
geometric parameters appear: the initial ratio of the total height of the ambient fluid
to the height of the dense fluid in the lock (or the dimensionless total height of the
fluids), H , and the initial length ratio (or the dimensionless radius of the container),
rw . The former may assume various values (but here at least 1, and typically large),
and the latter is assumed sufficiently large for not interfering with the motion of the
current for the time period of interest.

For a physical reference system, we may consider the following laboratory setting:
in a tank with pure water of height 20 cm and diameter 1 m, we release a saline current
of h0 = 5 cm, r0 = 10 cm and g′ = 10 cm2 s−1, and the system rotates with Ω = 1 r.p.m.
For this case, C = 0.15, Re = 7 × 103, ε = 10−2, D = 2 × 10−7, H = 4 and rw = 5.
The parameters C and H can be varied easily.

The initial conditions at t = 0 are

v = 0 (0 � r � rw, 0 � z � H ), (2.14)

φ =

{
1 (0 � r � 1, 0 � z � 1),

0 elsewhere.
(2.15)

The boundary conditions for t � 0 are

v = 0 (on the bottom and sidewalls), (2.16)

w = 0 and no shear (z = H ), (2.17)

u = 0 and regularity (r = 0), (2.18)
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Figure 2. Sketch of numerical grid (rw = 4, H = 1.75), and the details of one cell. The
centre of the computational cell is denoted by (i, j ), corresponding to the position ri , zj ,
(1 � i � il, 1 � j � j l).

and

n̂ · ∇φ = 0 (on all boundaries). (2.19)

These conditions contain some simplifications, in particular (2.17) which is the
frictionless ‘rigid lid’ approximation for the free surface. The initial interfaces (between
the ambient and dense fluids and also the free surface of ambient fluid) deviate from
the horizontal by an amount 0.5ε C2r2. The free surface will also have an additional
O(ε ) deformation during the flow. Neglecting these departures from the horizontal is
justified for the small values of ε and C2 used in this investigation. In addition, we
assume that the lock is removed instantaneously and without any perturbation to the
fluid. (In real situations, such as laboratory experiments, the lock lifting is expected to
introduce a small delay in the initial motion which is a source of discrepancy between
theory and measurements.)

The two-dimensional version of the foregoing formulation in a rectangular non-
rotating x, z-coordinate system can be obtained as follows: (i) set v ≡ 0, C = 0,
and replace r with x; (ii) delete the curvature terms, and (iii) change the regularity
boundary condition on the axis, (2.18), with no-slip.

3. Navier–Stokes numerical simulation (NS) approach
The foregoing system of equations and boundary conditions, subject to the axial-

symmetry assumption, is solved by a time-marching finite-difference discretization
method. The details are described in Hallworth et al. (2001). Briefly, the method
is based on forward-time discretization of the velocity components, with implicit
Coriolis and pressure terms. The continuity equation for the new velocity field yields
an elliptic equation for the new pressure field.

The spatial discretization is performed on a staggered grid with il radial intervals
and jl axial intervals as sketched in figure 2. The variables p and φ are defined at
mid-cell position denoted (i, j ); u and v are both defined at the positions (i ± 1

2
, j ) (to

allow straightforward implementation of the Coriolis coupling) and w is defined at



On axisymmetric rotating gravity currents 43

(i, j ± 1
2
). Both the r and z grid coordinates are stretched by simple mapping functions

r(R) and z(Z). The grids Ri = (i + 1
2
)δR and Zj = (j + 1

2
)δZ are uniform in the

domain (0 � R � rw, 0 � Z � H ) with intervals δR = rw/il, and δZ = H/jl. The
truncation error is O(δR2+δZ2). Dummy cells were added for easy implementation of
boundary conditions. An illustration of the finite-difference approximation approach
is (

1

r

∂

∂r
r

1

1 + ε φ

∂p

∂r

)
ri ,zj

≈ 1

ri

1

r ′
i δR

(
Yi+1/2,j − Yi−1/2,j

)
, (3.1)

where

Yi+1/2,j = ri+1/2

1

1 + ε φi+1/2,j

1

r ′
i+1/2δR

(pi+1,j − pi,j ), (3.2)

and r ′
i is the derivative of r(R) at Ri (substituting i − 1 in place of i yields Yi−1/2,j ).

This method of central differences was employed for all terms, except for the
advection terms in the φ transport equation (2.9). The interface between the pure
and the dense fluids is represented by a sharp gradient in φ which may cause strong
oscillations in numerical finite-difference schemes. To avoid this spurious effect, in
the solution of (2.9) we implemented MacCormack’s explicit method, see Anderson,
Tannehill & Pletcher (1984), i.e. we used at each time step a predictor–corrector
relationship which combines forward and backward differences of the advection
terms in two half-steps. Comparisons of computed results confirmed the smoothing
effect of this approach.

The combination of the foregoing time and space discretization are the core of
the computer code used in this work. For each time step, the discretized form of
the Poisson equation for the ‘new’ pressure variables p+

i,j , 1 � i � il, 1 � j � jl
must be solved. This yields, after the implementation of the boundary conditions, a
block tri-diagonal linear system which was solved by a bi-conjugate gradient iterative
algorithm (see Press et al. 1992). The computations use real-8 variables. The typical
grid has il = 200 constant radial intervals and jl = 150 slightly stretched axial intervals
and the typical time step was δt = 10−3.

The choice of the numerical grid parameters was motivated by the compromise
between accuracy considerations and computational limitations. Essentially, the mesh
intervals are considerably smaller than the expected typical corresponding geometrical
dimensions of the simulated current (e.g. the length of the ‘head’, the average thickness,
and even the Ekman layer thickness (estimated as 3E1/2). We therefore expect that the
numerical results provide an acceptable simulation of an observable gravity-current
process, at least during the initial period. Eventually, when the current becomes thin
(say, about 10 axial intervals) and the interface very irregular, the numerical errors
may become significant and even dominant.

The major task was to simulate the rotating current for the time interval t ≈ 2C−1 (in
dimensional form, Ωt∗ ≈ 2), during which the most significant effects of propagation
and attainment of maximal spread are expected to take place.

For the simulation of two-dimensional rectangular non-rotating currents, a special
version of the numerical code was also developed, as outlined in the last paragraph
of the previous section, but the details will be presented elsewhere.

4. The inviscid shallow-water (SW) approximation
The following main simplifications are introduced. Let rN (t) denote the radius of

the ‘nose’ of the dense fluid current. A sharp interface, z = h(r, t), 0 � r � rN (t), is
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assumed to separate the fixed volume of dense fluid from the ambient. This defines an
‘upper’ layer whose variables are denoted by the the subscript 2, and a ‘lower’ layer,
whose variables are denoted by the subscript 1 when necessary (when no subscript is
given for an SW variable, we refer to the lower layer). The densities in the layers are
assumed constant, ρ1 = ρd and ρ2 = ρa , and hence the values of the density function,
see (2.4), are φ1 = 1 and φ2 = 0.

We consider the limiting case when both 1/Re and h0/r0 are very small, and neglect
all terms multiplied by these parameters in the momentum equations (2.6)–(2.8).

The axial momentum equation (2.8) reduces to the hydrostatic balance for both
layers, and integration with respect to z and subject to continuity of pressure at the
interface yields

p1(r, z, t) = pI (r, t) + [h(r, t) − z], p2(r, z, t) = pI (r, t), (4.1)

where pI (r, t) is the pressure at z = h(r, t).
Next, the governing equations are z-averaged (separately in domains 1 and 2) and

reduced to equations for the z-averaged variables ui(r, t) and vi(r, t) (i = 1, 2); h1(r, t)
and h2(r, t) denote the thickness of the domains. Evidently, h1 = h, the locus of the
interface.

Hereinafter, in the spirit of the ‘shallow-water’ framework, the z-averaged variables
ui and vi are considered as functions of r and t only. The resulting equations for
these variables are presented below, in dimensionless form.

4.1. The governing SW equations

The full partial-differential system, in conservation form, can be written as

∂h1

∂t
+

∂

∂r
(u1h1) = −u1h1

r
, (4.2)

∂h2

∂t
+

∂

∂r
(u2h2) = −u2h2

r
, (4.3)

∂

∂t
(u1h1) +

∂

∂r

(
u2

1h1 + 1
2
h2

1

)
= −u2

1h1

r
− h1

1

1 + ε

∂pI

∂r

+ C2v1h1

(
2 +

v1

r

)
+ C2ε rh1

1

1 + ε
, (4.4)

∂

∂t
(u2h2) +

∂

∂r

(
u2

2h2

)
= −u2

2h2

r
− h2

∂pI

∂r
+ C2v2h2

(
2 +

v2

r

)
, (4.5)

∂

∂t
(v1h1) +

∂

∂r
(u1v1h1) = −2u1h1

(
1 +

v1

r

)
, (4.6)

∂

∂t
(v2h2) +

∂

∂r
(u2v2h2) = −2u2h2

(
1 +

v2

r

)
. (4.7)

On the right-hand sides of the radial momentum equations (4.4) and (4.5) we readily
identify the curvature, pressure and Coriolis-centrifugal terms. However, (4.4) contains
two additional terms: the last one on the left-hand side is the pressure contributed
by the larger density of the fluid below the interface, and the last term on the right-
hand side, which is actually negligible, represents an excess of centrifugal effects not
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accounted for in the reduced pressure. The geometry and global continuity impose

h1 + h2 = H, (4.8)

u1h1 + u2h2 = 0. (4.9)

The number of partial differential equations required for obtaining the solution
can be reduced. Obviously, the result of (4.3) can be obtained from (4.2), (4.8) and
(4.9). Moreover, as shown by Rottman & Simpson (1983), upon elimination of pI

from (4.4)–(4.5) and using (4.8)–(4.9) to eliminate u2 and h2 subsequently, we can
decouple the radial momentum equation of layer 1 from its counterpart of layer 2. It
is therefore unnecessary to solve the latter equation, since u2 can be obtained from
(4.9). The decoupled radial momentum equation reads

∂

∂t
(u1h1)+

[
B

A
+ 1

]
u1

∂

∂r
(u1h1)+

[
C

A
h1 − B

A
u2

1

]
∂h1

∂r
= h1

E

A
+h1

D

A
− u2

1h1

r
, (4.10)

where

A = 1 + ka,

B = 1 − ka
H + h1

H − h1

,

C = 1 − k(1 + a)3
u2

1

H
,

D = k
Hh1

(H − h1)2
u2

1

r
,

E = C2

[
v1

(
2 +

v1

r

)
− kv2

(
2 +

v2

r

)]
,




(4.11)

and

a =
h1

H − h1

, k = (1 + ε )−1. (4.12)

Hereinafter, in the SW formulation, we invoke the Boussinesq approximation setting
ε = 0 (i.e. k = 1) in the coefficients (4.11)–(4.12).

The Coriolis-centrifugal influence in the radial momentum balance is represented
by the term E in the right-hand side of (4.10).

The governing system has been reduced to contain the partial differential equations
(4.2), (4.10) and (4.6)–(4.7), supplemented by the algebraic equations (4.8)–(4.9). We
shall show in § 4.3 that additional reduction concerning the azimuthal motion can be
performed, but it is convenient to consider first the initial and boundary conditions.

The characteristic form of the equations is presented in the Appendix. An inspection
of (A 2) and (A 6)–(A 7) leads to the conclusion that the velocity of propagation of
the characteristics is not influenced by the angular velocity; on the other hand, both
the rotation and curvature contribute important source terms to the balance of h and
u on the characteristics.

4.2. The initial and boundary conditions

The ambient is assumed unbounded in the radial direction, and hence no a priori
limitation on the propagation of the current is imposed. Practically, however, the
radial spread is restricted by the Coriolis effects, as discussed below, or by the viscous
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shear which is bound to become dominant when the head becomes thin and slow
(more precisely, when u∗

Nh∗
Nρa/µ < 50).

The initial aspect ratio condition, h0/r0, has been eliminated from the SW
formulation as a result of the scaling (2.2)–(2.3).

The initial conditions are zero velocity, h1 = 1 and rN = 1 at t = 0.
The velocity boundary conditions for the above mentioned system are:
(i) No-flow and regularity at the centre

u1 = 0,
∂ωi

∂r
= 0 (r = 0, i = 1, 2), (4.13)

where ωi = vi/r .
(ii) Dynamic nose-front condition.

For the present hyperbolic system of governing equations, the nose of the dense fluid
current is a shock discontinuity whose speed is provided by additional considerations.
The consensus is that the nose of a realistic space- and time-dependent gravity current
obeys a local quasi-steady correlation between the height hN and the velocity uN .
The underlying theory for this correlation was developed by Benjamin (1968) (in
a two-dimensional geometry): balance of flow force (momentum plus pressure) and
volume continuity between the approaching and receding stream (with respect to the
nose) in an inviscid fluid yield

uN = Fr(hN/H )(hN )1/2, (4.14)

where the Froude ‘number’ Fr is an explicit function (equation (2.22) in that paper) and
varies in a narrow range about 1. Experiments confirmed the qualitative behaviour of
(4.14), but also indicated quantitative discrepancies with the function Fr of Benjamin
(1968), which can be attributed to various small-scale effects such as viscous friction
and mixing. This motivated attempts to introduce empirical modifications of the
Fr(hN/H ) function. Rottman & Simpson (1983) performed calculations, by the method
of characteristics, of a current released from behind a lock in a rectangular geometry
using the two-layer SW equations, closed by the front condition (4.14) with the
Fr function derived by Benjamin (1968), but multiplied by an adjustable coefficient
denoted β . They showed that fair agreement with experiments was obtained for β = 1,
although the theoretical value is β =

√
2.

Huppert & Simpson (1980) suggested an empirical curve-fit correlation (derived
for two-dimensional non-rotating currents) which is simpler and seems to provide a
wider agreement with available data, as follows,

Fr =

{
1.19 (0 � hN/H � 0.0742),

0.5H 1/3h
−1/3
N (0.0742 � hN/H � 1),

(4.15)

We shall use this correlation in the SW calculation in conjunction with (4.14), where
hN and uN are the instantaneous values of h1 and u1 at rN (t).

Figure 3 displays the different formulae for Fr as a function of hN/H . It is observed
that (4.15) is bounded by the values tested by Rottman & Simpson (1983) for
0 < hN/H < 0.6. (We note in passing that the range hN/H > 0.6 is spurious because
it implies a velocity of the nose larger than that of the forward characteristic and, in
any case, is outside the parameter range of this study.)

The use of (4.14)–(4.15) in axisymmetric configurations shows good agreements
with experiments, see Hallworth et al. (2001), figure 4.

For a rotating axisymmetric current, C > 0, to the best of our knowledge no
detailed investigation on the nose condition has been performed. However, following
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Figure 3. Fr as a function of hN/H : the correlations of Rottman & Simpson for two values
of β2, and of Huppert & Simpson (HS) which is used in this work, equation (4.15).

Ungarish & Huppert (1998) and Hallworth et al. (2001), we argue that the force
balance used in the derivation of the nose conditions by Benjamin (1968) requires
an O(C2) correction if a background rotation is present, and hence (4.14)–(4.15) may
be used as a fair approximation in the present case, at least when C2 
 1. Indeed,
Ungarish & Huppert (1998) and Hallworth et al. (2001) used this approximation for
a one-layer model and obtained fair agreement with experiments. This conclusion
turns out to be valid also for the two-layer model as shown in this work.

(iii) The lower-layer angular velocity nose condition.
The characteristic path and balance associated with the angular momentum equation
of the lower layer are relatively simple, see (A 2) and (A 10), and identical with
the one-layer case, cf. Ungarish & Huppert (1998). Integration along a pertinent
characteristic attached to the nose yields

ω1(r = rN ) = −1 +

(
1

rN (t)

)2

. (4.16)

(This result also expresses the conservation of potential vorticity in the lower layer,
as discussed later.)

(iv) The upper-layer angular velocity nose condition.
From angular momentum and volume conservation considerations we obtain

ω2(r = rN ) = 0. (4.17)

To derive this result, we considered the motion of the ambient fluid which flows
inward from r > 1 to cover the lower-layer fluid which flows outward, see figure 4.
We assume that the ambient fluid from the outside moves in axisymmetric shells,
which means that a ring from a smaller radius is displaced before a ring of the
ambient fluid located at larger radius, and that each ring conserves the appropriate
angular momentum. Let rO(t) be the initial radius of the ‘last’ ring of fluid which
moved in to take its place just above the nose of the lower layer, at r = rN (t).
An inspection of the configuration, see figure 4 (as well as analytical volume balance
calculations) proves that rO = rN , i.e. the ‘last’ ring of ambient fluid which is above the
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Figure 4. Sketch of upper regions Au (ambient fluid initially above the dense fluid in the
lock) and Bu (added ambient fluid to layer 2 during propagation of the current) and the lower
regions Al and Bl of dense fluid. At the initial time the region B does not exist.

nose at time t has not been displaced from its initial radial position, and consequently
maintains its initial zero angular velocity.

(v) The necessary boundary conditions for h1 at r = 0 and rN are provided
implicitly by the characteristics discussed in Appendix A. This means that the SW
formulation is well-posed only when the characteristics from inside the dense fluid
domain propagate smoothly to these positions, and restrictions on the straightforward
solution emerge. First, at t = 0+ the height of the nose must be assumed to drop
instantaneously from hN = 1 to a smaller value (typically 0.4, depending on the
Fr correlation) for which the characteristic velocity matches that of the nose and,
secondly, the initial height ratio H in the two-layer model must be larger than 2,
as pointed out by Rottman & Simpson (1983). The latter restriction can apparently
be relaxed by a special treatment of the region r < 1 during the initial period of
propagation, see Klemp et al. (1994) and Zemach (2002), but this refinement was
beyond the objectives of the present study.

(vi) The position of the nose as a function of time is given by the kinematic
condition

d

dt
rN (t) = u1(rN, t). (4.18)

4.3. The connection between the angular velocities of the lower and upper layers

It is well-known that, in the two-layer SW formulation, the average radial velocities
in the upper and lower layers are connected by the simple algebraic formula (4.9),
a straightforward consequence of volume conservation. We show here that, in the
considered configuration, the average angular velocities in the upper and lower layers
are also connected by some beneficial algebraic formulae. This is a consequence of
more complex conservation balances, as follows.

First, we note that the potential vorticity is conserved under the assumptions of the
present SW model in both layers, i = 1, 2. This result, in dimensionless form, can be
expressed as

D

Dt

(
ζi + 2

hi

)
= 0, (4.19)

where

ζi =
1

r

∂

∂r
(r2ωi) (4.20)

is the axial vorticity component (scaled with Ω) (e.g. see Dewar & Killworth 1990;
Ungarish & Huppert 1998).
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The initial condition is simply

ζ1 = ζ2 = 0 (t = 0). (4.21)

However, the implementation of the foregoing potential vorticity balances is compli-
cated by the fact that the fluid in the domain of interest (0 � r � rN, 0 � z � H ) is
composed of bulks which carry different values of potential velocity, because of their
different initial positions in the process. To sort this out, we split the domain into
four regions, A and B each with an upper and lower part, see figure 4.

Region Au : h1 � z � H ; 0 � r � rM (t)
contains the volume of ambient fluid which at t = 0 was located above the ‘locked’
dense fluid. The volume is π(H − 1) and rM (0) = 1.

Region Bu : h1 � z � H ; rM (t) � r � rN (t)
contains the volume of ambient fluid which entered the upper layer after the release
of the current.

Region Al : 0 � z � h1; 0 � r � rM (t)
contains the dense fluid below the ambient fluid of region Au.

Region Bl : 0 � z � h1; 0 � rM (t) � rN (t)
contains the dense fluid below the ambient fluid of region Bu.

Here, rM (t) denotes the radius of the region A, which is provided implicitly by the
volume conservation

2π

∫ rM (t)

0

(H − h1(r, t))r dr = π(H − 1); (4.22)

evidently, (1 − H −1)1/2 < rM < 1 (for 0 < h1 < 1).
Consider 0 � r < rM (t). Initially, the fluid particles located in the upper region Au

are of height h2 = H − 1, and those in the region Al below are of height h1 = 1.
We start with the upper region Au. Equations (4.19) and (4.21) combine into

ζ2 + 2

H − h1

=
2

H − 1
, (4.23)

and provide, recalling the relationship (4.20) between ζ and ω,

h1(r, t) = 1 − 1
2
(H − 1)

1

r

∂

∂r
(r2ω2). (4.24)

Substitution of (4.24) into (4.22) yields

2π(H − 1)
[

1
2
r2
M + 1

2
r2
Mω2(rM )

]
= πr2

M (H − 1), (4.25)

which can be rewritten as

ω2(rM−, t) = −1 +

[
1

rM (t)

]2

, (4.26)

which actually expresses angular momentum conservation for a ring of fluid which
moved from r = 1 inwardly to rM . (We used rM− because at this stage it is not known
whether ω2 is continuous at the border between regions A and B.)

In the lower region Al , the potential vorticity conservation reads

ζ1 + 2

h1

= 2. (4.27)
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We eliminate h1 from (4.27) and (4.23) to obtain:

∂

∂r
(r2ω1) = −(H − 1)

∂

∂r
(r2ω2). (4.28)

Integration of (4.28), subject to the condition of regularity of the angular velocity
at r = 0, provides the following connection between the lower-layer and upper-layer
angular velocity

ω2(r) = − 1

H − 1
ω1(r) (0 � r < rM (t)). (4.29)

Consider rM (t) < r � rN (t). Initially, the fluid particles located in the upper region
Bu are of height h2 = H , and those in the region Bl below are of height h1 = 1.
Consequently, (4.27) holds in Bl , while in Bu the corresponding balance is

ζ2 + 2

H − h1

=
2

H
. (4.30)

We eliminate h1 from (4.27) and (4.30) to obtain:

1 +
1

2

1

r

∂

∂r
(r2ω1) = − 1

2
H

1

r

∂

∂r
(r2ω2). (4.31)

Integration of the last equation subject to the boundary conditions (4.16) and (4.17)
gives the following connection between the lower-layer and upper-layer angular
velocity:

ω2(r) = − 1

H

[
ω1(r) + 1 − 1

r2

]
(rM (t) < r � rN (t)). (4.32)

Finally, consider the behaviour at the position r = rM (t). The angular velocity of
the lower layer, ω1, is continuous at this point because all the fluid in this layer
emerged from behind the lock. With this observation in mind, we calculate ω1(rM )
using (4.26) and (4.29), then substitute it into (4.32). The result is that ω2 is also
continuous at rM .

We can therefore summarize the foregoing results into a compact analytical
connection between the angular velocities in the upper and lower layers

ω2 =




− 1

H − 1
ω1 (0 � r � rM ),

− 1

H

[
ω1 + 1 − 1

r2

]
(rM � r � rN ),

(4.33)

where rM (t) is defined by (4.22).
Evidently, for H → ∞, the one-layer assumption ω2 = 0 is recovered. On the other

hand, when H → 1, we expect ω2 → ∞ for r � rM . This non-physical result indicates
that viscous terms cannot be neglected in this case in the (actually very small) domain
where ω2 is large.

An important implication of (4.33) is the possibility of discarding one of the
two partial differential equations for the azimuthal (angular) velocities in the system
which governs the average motion in the two-layer system, and calculate the discarded
variable (say, ω2) from (4.33). A similar possibility has been developed for the radial
velocity by Rottman & Simpson (1983), as already mentioned. The conclusion is that,
after the foregoing manipulations of the two-layer model, it is necessary to solve
the governing equations only for one layer (say, the lower one, with subscript 1).
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The directly obtained variables (h1, u1, ω1) provide the corresponding upper-layer
counterparts via the simple algebraic connections (4.8)–(4.9) and (4.33).

We observe that the inviscid SW approximation predicts a discontinuity of angular
velocity between the dense and ambient fluid both at the nose (r = rN ) and along the
interface (z = h), but the angular velocity of the ambient remains continuous during
the propagation.

Finally, we note the connection between the angular velocity boundary condition
(4.16) and the potential vorticity conservation (4.19) for i = 1. If we formulate the
volume conservation in the lower layer, with h1 defined via (4.27) and ζ1 replaced by
(4.20), we recover (4.16).

4.4. Integration of the time-dependent SW equations

The SW time-dependent system of hyperbolic PDEs and appropriate boundary
conditions must be solved by numerical methods. Although we are able to reduce the
two-layer model to a set of partial differential equations for the variables of one layer
only, a fundamental difference remains between the one- and two-layer models. In the
genuine one-layer model, the characteristics cover smoothly the entire domain of the
dense fluid, but in the two-layer model some non-physical behaviour of characteristics
may appear for values of H smaller than about 2. Actually, the two-layer model
predicts that for H < 2, shortly after the release, the backward-moving depression
wave of the interface develops into a steep ‘jump’. This backward-moving shock wave
needs special consideration, as discussed by Rottman & Simpson (1983), Klemp,
Rotunno & Skamarock (1994) and Zemach (2002), but complete remedies have been
suggested only for rectangular geometries. In order to avoid these complications, we
restrict our two-layer solutions to H > 2.3. This topic will be reconsidered in the next
section. The SW system of hyperbolic equations is essentially amenable to solution
by the method of characteristics, as used by Rottman & Simpson (1983) for the
rectangular case. However, here we are concerned with the complicated extension to a
cylindrical coordinate system and the incorporation of angular momentum balances,
and the use of a fixed (prescribed) numerical grid is advantageous. We therefore
use the finite-difference discretization of the original equations by a two-step Lax–
Wendroff method (see Anderson et al. 1984; Press et al. 1992), which produces, as
shown below, a convenient efficient and flexible numerical code.

To facilitate the implementation of the boundary conditions, the time-dependent
physical r-domain of interest was mapped into a time-independent computational
domain by

y =
r

rN (t)
(0 � y � 1). (4.34)

Consequently, the SW equations were subjected to the following coordinate
transformations:(

∂

∂t

)
r

=

(
∂

∂t

)
y

− y
ṙN

rN

(
∂

∂y

)
t

,

(
∂

∂r

)
t

=
1

rN

(
∂

∂y

)
t

, (4.35)

where the over dot denotes time derivative. Following the approach of Bonnecaze,
Huppert & Lister (1993) and Ungarish & Huppert (1998), we performed the
numerical solution using a finite-difference two-step Lax–Wendroff method. For
efficient implementation of this scheme, the governing equations (4.2), (4.10) and
(4.6), supplemented by (4.8)–(4.9) and (4.33), are formulated in conservation form for
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the variables h = h1, q = u1h1 and s = v1h1


∂h

∂t
=

1

rN

[
yṙN

∂h

∂y
− ∂q

∂y

]
− q

r
,

∂q

∂t
=

1

rN

[(
yṙN − B

A

q

h
− q

h

)
∂q

∂y
+

(
B

A

q2

h2
− C

A
h

)
∂h

∂y

]
+ h

D + E

A
− q2

hrNy
,

∂s

∂t
=

1

rN

[
yṙN

∂s

∂y
− ∂

∂y

(qs

h

)]
− 2q

[
1 +

s

hrNy

]
.

(4.36)

Smoothing of spurious oscillations was achieved by use of a small artificial viscosity
term added to the radial momentum equation. The obvious boundary conditions are
(4.13)–(4.18). In addition, boundary conditions for h (at y = 0, 1) are necessary, and
calculated for each new time step from the balances on the characteristics λ−, λ+,
see the Appendix. Note that the velocity dy/dt is obtained by the transformation
[dr/dt − yṙN ]/rN of the characteristic velocities in the physical domain.

After obtaining the variables in the lower layer, the counterparts in the upper layer
are readily calculated with the aid of (4.8)–(4.9) and (4.33). A typical computation
using a grid of 100 intervals can be performed in about 1min on a common
workstation. Results will be presented in § 5.

4.5. Steady-state lens (SL)

The SW equations admit a steady-state solution with u = 0 and rN = const. Letting
y = r/rN , the governing system is given by the radial momentum and potential
vorticity equations, (4.10) and (4.27), for 0 � y � 1, as follows

dh1

dy
= C2r2

Ny[ω1(2 + ω1) − ω2(2 + ω2)], (4.37)

h1 = 1 + ω1 + 1
2
y

dω1

dy
, (4.38)

subject to the relationship (4.33), the boundary conditions (4.13), (4.16) and
h(y = 1) = 0. Substitution of (4.38) and (4.33) into (4.37) yields a single equation for
ω1. The solution provides rN of the lens, ω1(y) and h(y). An equivalent system was
formulated by Dewar & Killworth (1990). In general, the solution is performed by
numerical methods, with some iterations on the nonlinear right-hand side of (4.37)
and value of rN . We used a finite-difference discretization on a 50 interval grid, and
performed iterations for obtaining the proper nonlinear combination of ω1(y) and rN .
The initial ‘guess’ was ω1(y) = ω1(1) and rN = 1.05(2/C)1/2; then, a new value of rN

was deduced by imposing the h(1) = 0 boundary condition, and so on. Usually, after
about nine iterations, convergence to at least five significant digits was achieved.

In the one-layer case, the solution is simplified by the fact that ω2 = 0, and
analytical approximations can be obtained. Assume an expansion in powers of C (for
small values of this parameter) as follows

ω1 = −1 + C
(
o(1) + C2o(2) + C4o(3) + . . .

)
, (4.39)

r2
N =

1

C
[
R(1) + C2R(2) + C4R(3) + . . .

]
. (4.40)
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Substitution in the equation for ω1 and the related boundary conditions and solving
separately for increasing powers of C we obtain

o(1) = 1 − 1
2
y2, (4.41)

o(2) =
−17 + 37

2
y2 − 8 y4 + y6

48
, (4.42)

o(3) =
3731

23 040
−

y2
(
10075 − 6880 y2 + 2540 y4 − 480 y6 + 32 y8

)
46 080

. (4.43)

and

R(1) = 2; R(2) = 11
24

; R(3) = − 193
2304

. (4.44)

The corresponding approximation for h(y) follows from the substitution of (4.39) into
(4.38),

h1 = C
[
o(1) + 1

2
yo′

(1) + C2
(
o(2) + 1

2
yo′

(2)

)
+ C4 . . .

]
= C[1 − y2 + C2 . . .]. (4.45)

We note that Nof & Simon (1987) and Ungarish & Huppert (1998) presented identical
results for the leading terms with subscript (1) in this expansion, but did not derive
the next terms.

The accuracy of this three-term expansion was verified via a comparison to the
numerical solution. For h1 and ω1, the maximal error is at the centre and decays
with y. For C2 = 0.4 (and smaller), the error is less than 0.5%, and even for C = 1
the maximal error is only about 7%. The numerical value of rN is larger than the
asymptotical one, but the agreement is remarkably good: the discrepancy is only
0.6% for C = 1.

We could not find simple analytical approximations for the SL in the two-layer
formulation. However, the influence of the upper layer on the behaviour of the SL
can be easily inferred from a numerical example. We considered the results for values
of C = 0.2 and 0.4 and various H . We found that the presence of the upper layer
hinders the expansion of the lens, but the effect on rN is small. For H = 10, the values
of rN are very close to the one-layer results (3.18 and 2.27 for C = 0.2 and 0.4), and
when H changes from 10 to 1.05, rN is reduced by 6% for C = 0.4, and 4% for
C = 0.2. Additional details are displayed in figure 5. For the variables h1, ω1 and ω2,
the strongest influence is observed near the centre, mostly in the domain r < rM . In
this region, as H decreases, h1 and ω2 increase, the latter almost as (H − 1)−1; this
effect is more pronounced for smaller C. However, for r > rM , the function ω2 decays
with r and the influence of the upper layer is weak. The position rM is easily identified
in figure 5(c) as the radius of maximum ω2.

The shape of h1 is in agreement with the results of Dewar & Killworth (1990). In
particular, Dewar & Killworth (1990) pointed out that, for H → 1, the lens tends to
maintain a ‘point of surface contact’, i.e. h1(r = 0) → 1, in strong contrast with the
value h1(r = 0) = C expected for a deep lens (H � 1). This is confirmed in figure 6,
which displays h1 as a function of r∗ scaled with the Rossby radius of deformation,
r0/C, and therefore our results for H close to 1 can be straightforwardly compared
with small δ cases in figure 4 of that paper. However, the initial depth ratio H

influences the shape of the lens near the centre only, where a small volume of the
dense fluid is present, even for the extreme H ≈ 1 case. We also observe that the
radius of the lens is significantly larger than the Rossby radius of deformation in
the presented case with a small value of C. The stability of the SL, mostly for
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Figure 5. Two-layer steady lens results for various H , C = 0.2 and 0.4: (a) h/C,
(b) (ω1 + 1)/C and (c) ω2 (H − 1) as functions of y.

non-small values of C has been considered both experimentally and theoretically (see
Griffiths & Linden 1981; Holford 1994; Choboter & Swaters 2000 and the references
therein), but this topic is beyond the scope of the present work.
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Figure 6. Two-layer steady lens results for various H , C2 = 0.1: h1 as a function of radius
scaled with the Rossby radius of deformation, r0/C.
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Figure 7. SW two-layer results for a non-rotating axisymmetric current with H = 2.4:
(a) interface h1 vs. r , various t; (b) radial velocity u1 vs. r , various t .

5. Results of SW and NS calculations
Typical results of the shallow-water approximation in various axisymmetric

configurations without and with rotation are presented in figures 7–9. (The
calculations were performed on a grid of 200 points with a time step of 10−3, and
confirmed by convergence tests on both finer and coarser grids.)

Figure 7, for a non-rotating current, shows the behaviour of the interface, h1,
and radial velocity, u1, in the dense fluid (current) domain. The ‘nose-up’ shape and
positive u during the entire period of propagation are typical of the non-rotating
configuration. We also note that a ‘throat’ depression of the interface appears around
r = 1 in the initial times of propagation of the axisymmetric current (figure 7a, the
t = 1 line ), unlike the constant h1 portion that trails the nose in the rectangular
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Figure 8. SW one-layer —, and - - -, two-layer results for a rotating axisymmetric current
with C = 0.3 and H = 2.4: (a) interface h1 vs. r , various t; (b) radial velocity u1 vs. r ,
various t .

current during the initial ‘slumping’ phase. This is a result of the curvature terms,
and is later reflected in the interesting double-peaked structure of the u1 profiles
(figure 7b). However, the first peak occurs in a very thin layer of fluid where viscous
effects may become dominant, and hence a clear-cut experimental verification of this
behaviour may be a difficult task.

The corresponding results of the shallow-water equations in a rotating frame with
C = 0.3 are presented in figure 8. The one- and two-layer results are in good qualitative
and quantitative agreement, and display the same differences to the non-rotating case.
The two-layer model predicts a slightly faster propagation. At the beginning of the
motion (t � 1), the rotating current behaves like the non-rotating counterpart. At
t ≈ 3 (Ct ≈ 0.9, about one-tenth of a revolution of the system), the leading part of the
rotating current displays a ‘nose-down’ shape, which reflects the hindering Coriolis
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Figure 9. SW one-layer —, and - - -, two-layer results for rotating axisymmetric current with
C = 0.3 and H = 2.4: angular velocity ω1 vs. r , various t .

effects. At t = 5, a significant reverse radial motion is present in the rotating current,
and at t = 6 (Ct = 1.8, about one-third of a revolution of the system), the height and
velocity of the nose are close to zero. The maximal radius of propagation is ≈ 3.5,
about 35% larger than that of the steady lens, cf. (4.40) and (4.44). This indicates an
energy excess that must be dissipated and the possibility of contraction–expansion
oscillations. However, the present SW model is not expected to be valid for this stage,
and, in particular, viscosity and wave-breaking effects are bound to change the nose
condition (4.14), see (Killworth 1992). This topic is not pursued here.

The angular velocity of the propagating dense fluid is displayed in figure 9. We
observe that ω1 is negative and quickly (at Ct ≈ 0.6, say) attains a value close to −1
in the entire dense-fluid domain. This means that the angular motion of the current
lags considerably behind that of the ambient current. The one- and two-layer model
predictions are, again, in good agreement, in particular in the region r > 1.

The oscillations with r observed in the SW results are attributed to spurious
numerical modes. It was verified that they could be smoothed by an increased artificial
viscosity, but this increase of dissipation may also affect the speed of propagation of
the current.

A major conclusion, based on this example and other similar results with various
values of C and H , is the very good agreement between the one-layer and two-layer
model predictions for the motion of a rotating gravity current. The difference appears
mostly near the centre, and hence affects only a small portion of the volume of
the moving fluid. The interpretation of this observation is as follows.

Consider the SW equations of motion and recall that we reduced them to the
solution of the lower layer only. The influence of the rotation (represented by the
parameter C) on the radial propagation enters only via the Coriolis-centrifugal term
E on the right-hand side of the radial momentum equation (4.10). This term can be
rewritten as

−C2r[−ω1 (2 + ω1) + ω2 (2 + ω2)]. (5.1)
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Run Geometry H h0/r0 rw C il × j l

1-2D Rectangular 1.25 0.36 5 0 250 × 100
2-2D Rectangular 2.50 0.36 5 0 250 × 100
1-R Axisymmetrical 1.25 0.36 4 0.3 160 × 150
1a-R Axisymmetrical 1.25 0.36 4 0.3 320 × 210
2-R Axisymmetrical 2.50 0.36 4 0.3 200 × 150
1-NR Axisymmetrical 1.25 0.36 4 0 160 × 150
2-NR Axisymmetrical 2.50 0.36 4 0 200 × 150

Table 1. NS runs data. In all cases: ε = 10−3,Re = 6 × 104.

Quickly, after the propagation of about one radius, ω1 ≈ −1 and the first term
in the square brackets becomes very close to 1. The second term in these brackets
is positive, and its magnitude (compared to unity) determines the influence of the
additional Coriolis terms in the upper layer. We use (4.33) to obtain the estimate
ω2 ≈ 1/Hr2 for r > 1 > rM . Thus, the relative contribution of the upper layer to the
Coriolis term for large r is about 2/Hr2, and typically very small, because the radius
of propagation is about (2/C)1/2. The relative contribution of the upper layer to the
Coriolis term may be large for small r , but this domain has little significance to the
global motion of the current. The physical interpretation of the foregoing estimates
is that the angular velocity in the upper layer produces only a small perturbation of
the solid-body-rotation pressure field in the ambient fluid.

Navier–Stokes (NS) simulations were performed for several configurations as
detailed in table 1. The accuracy of the numerical results was confirmed by testing
different time steps and grids (in particular in the runs of rotating cases 1-R and 1a-R).
The computations on the fine grid, 320 horizontal and 200 vertical intervals, require
considerable amounts of both CPU time (to advance the flow field by a dimensionless
time interval of 1 it took about 11 CPU hours on an SG Origin computer with
R10000/3.4 250 MHz processors) and storage space. This is in strong contrast with
the SW solutions which require only several CPU seconds for the corresponding
task.

Figure 10 displays results for two rectangular (non-rotating) currents, of initial
depth ratios H = 1.25 and 2.5, at times t = 1 and 2. This figure shows that the shape
of the current is (i) little affected by the value of H , and (ii) significantly different
from the predictions of the SW model. In particular, we recall that for H < 2, the
SW two-layer model predicts that the interface contains a steep backward-moving
portion (jump) during the initial collapse (say, t < 2). In the NS results, no such
jump is observed in both the density and velocity fields. On the other hand, as shown
in figure 11, the distance of propagation as a function of time predicted by the NS
simulations is in good agreement with the SW results of both the one- and two-layer
models. We note in passing that the velocity of propagation predicted in the present
case by the SW models (in particular the two-layer one) is also in good agreement
with experimental data (Ungarish & Zemach 2003).

Figure 12 displays corresponding results for the axisymmetric (non-rotating) current
at times t = 1 and 2 for the initial depth ratios H = 1.25 and 2.5. As in the rectangular
case, the shape of the current is (i) little affected by the value of H , and (ii) significantly
different from the prediction of the SW model. The nose of the axisymmetric current
is lower and the speed of propagation decreases faster than in the case of the
rectangular current with similar initial release conditions; this is a consequence of the
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Figure 10. Rectangular gravity currents, NS results. Density function contours for (a) H =
1.25 and (b) H = 2.50 at t = 1 and 2; also shown the velocity vector plot for H = 1.25.

curvature effect on the volume continuity. This behaviour is consistent with the SW
predictions. Again, good agreement between the NS and SW results of the distance
of propagation as a function of time was obtained for these times, see figure 14. Some
recent experiments indicate good agreement of rN vs. t with SW model predictions
(figure 4 in Hallworth et al. 2001).

The NS predicted behaviour of a rotating current with C = 0.3 and H = 1.25 is
illustrated in figures 13–15. The computation was performed on a relatively fine grid,
with 320 radial and 210 stretched intervals, and a time step of 2 × 10−4. We note that
very close results were obtained also on a coarser grid (160 × 150 intervals).

The density contours in figure 13 show the complex shape of the interface, with
regions of mixing and entrainment. The Coriolis effects cause, at t = 4 and 6, an
evident reverse flow manifested by accumulation of fluid in the centre. At t = 6, the
outer ring of dense fluid seems to separate from the main bulk of the current at
r ≈ 2.5.
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Figure 11. Length of propagation as function of time of rectangular currents with H = 1.25
and 2.5, as predicted by – – �, NS and —, SW one- and two-layer models (the slightly higher
line is for the two-layer model).
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Figure 13. Rotating current with C = 0.3 and H = 1.25, density contours at various times
predicted by NS (320 × 210 grid).

The time-dependent behaviour of the radius of propagation of the rotating current
is shown in figure 14. We display the NS predictions for both the rotating and the non-
rotating currents (circle and square symbols, respectively) and the corresponding SW
approximations with a one-layer model (solid lines). All results practically coincide
for t � 2. Afterwards, the NS propagation is slightly slower than the SW prediction,
which we attribute to the mixing/entrainment effects. In addition, for t > 2, the
Coriolis effects hinder the propagation of the rotating current, as clearly seen in both
NS and SW results. The SW predicts that the maximal radius is attained at t ≈ 6 (0.3
revolutions). A close inspection of the NS results indicates that at this time the head
region of the current is not sharply defined: the dense fluid in the ring 2.4 < r < 2.8
is quite diluted and apparently detached from the main body of the current. This
uncertainty is indicated by the two NS points at t = 6 in figure 14. Overall, there is fair
agreement between SW and NS predictions concerning the distance of propagation.
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for currents with H = 1.25 non-rotating (n.r.) and rotating with C = 0.3. The two points of
the rotating current at t = 6 indicate the spread of the head.
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The above mentioned fade-out of the head of the rotating gravity current has been,
qualitatively, observed in the laboratory experiments reported in Hallworth et al.
(2001). It may explain the fact that for small values of C, the NS calculations do not
converge to the analytical steady-lens results. Killworth (1992) noted that a wave-
breaking mechanism may be needed to accommodate the energy differences between
the initial and final state of a ‘collapsed cylinder’ lens. Such an over-expanded lens is
expected to contract and then oscillate, perhaps like the ‘pulsons’ studied by Rubino,
Hessner & Brandt (2002) (where other references are given). However, the details of
these effects require fine resolutions, beyond the accuracy of the present grids (and
very likely also the inclusion of some non-axisymmetric modes). This topic is left for
future investigations.

The angular velocity field is illustrated in figure 15. We notice that the current has
a distinct ‘signature’, i.e. the angular velocity of the dense fluid is in clear contrast
with that of the ambient. Moreover, we observe that after a short time, ω in the
current is close to −1, while in the central region of the ambient fluid (r < 0.5, say)
a large positive value of ω develops. In other words, while the current fluid loses its
rotation relative to an inertial frame, the central core of the ambient fluid attains
a swirl velocity about three times larger than the initial one. The positive swirl is,
of course, a result of the inward radial motion of the fluid in the upper layer; in
the corresponding configuration with H = 2.5 (not displayed) a much smaller swirl
develops. Nevertheless, this strong swirl motion has little effect on the propagation
of the current, because rN (t) is practically the same for both H = 1.25 and 2.5, see
figure 14. Experimental measurement of the angular velocity field in a propagating
gravity current is a difficult task and, to the best of our knowledge, these data have
not been recorded. We hope that our results will motivate work in this direction.

6. Concluding remarks
We investigated the behaviour of axisymmetric gravity currents, released from

behind a lock, in a rotating environment using shallow-water (SW) and finite-
difference Navier–Stokes (NS) solutions. We focused attention on the case of small
C (ratio of Coriolis to inertia terms) and large Re (ratio of inertia to viscous terms),
but various H (height of ambient over initial height of the dense fluid).

We developed a two-layer SW formulation and obtained an explicit correlation
between the angular velocities in the lower and upper layers. It was known that in
the non-rotating case, the two-layer model can be reduced to the solution of two
coupled PDEs for the dependent variables h and u of the dense layer only, and the
corresponding variables in the upper layer are then obtained from explicit algebraic
connections. Now we are able to extend this knowledge to the rotating current, with
the addition of a PDE for the angular velocity ω in the dense layer whereas the
corresponding variables in the upper layer are again obtained from simple algebraic
connections. This procedure also simplifies the analysis and solution of the steady-
state lens structures; however, a numerical solution is still necessary for the general
two-layer lens problem, but an improved accurate asymptotical result was developed
for the one-layer limit.

The two-layer SW current requires a ‘nose’ Froude-number condition which
correlates the local velocity, uN , to the local height of the dense fluid, hN , taking
into account the total height of the ambient, H . We found that the results of a one-
layer model (i.e. with unperturbed ambient), subjected to the same Froude-number
condition, are in very good agreement with the predictions of the two-layer model,
except for a relatively small domain near the axis.
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The full NS computations confirm the insights provided by the SW approximations,
but also point out the very complex shape of the interface and the strong
mixing/entrainment effect of a real current. The velocity of propagation of the
characteristics of the SW model is not influenced by the rotation and hence difficulties
of the type encountered in the rectangular (in particular two-layer) model may appear.
The two-layer SW formulation becomes problematic when the initial height ratio
H is smaller than 2; Rottman & Simpson (1983) pointed out the appearance of a
backward-moving shock in the initial collapse phase, and Klemp et al. (1994), Zemach
(2002) and Ungarish & Zemach (2003) show how to incorporate this singularity into
the solution in a rectangular geometry. This complication has not been considered in
the present work, but we argue that it is expected to be of little importance, because:
(i) The NS results do not show any dramatic differences when H changes from 2.5
to 1.25 (and even closer to 1); we speculate that local viscous effects smooth out the
‘jump’ predicted by the inviscid theory. (ii) The modifications associated with this
singularity are confined to a region close to the axis which, as already mentioned,
has little influence on the propagation of the main body of the current. A detailed
analysis of this topic is left for future work.

The assumption of axial symmetry is incompatible with some of the observed
details concerning the motion and stability of real gravity currents. The investigation
of the three-dimensional effects is a complex task and is also left for future work.

The research was partially supported by the Fund for the Promotion of Research at
the Technion and by the Bar-Nir Bergreen Software Technology Center of Excellence.

Appendix. SW formulation in characteristic form
The characteristic form, paths and relationships are useful for the understanding

of some features of the solution and for the application of the boundary conditions
in the numerical solution of the SW equations.

The governing system (4.2), (4.10) and (4.6)–(4.7) can be rewritten as
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with corresponding eigenvalues of the matrix of coefficients which are:

λ1 = − u1h1

H − h1

,

λ2 = u1,

λ+ =
u1(A + B) +

[
u2

1(A − B)2 + 4CAh1

]1/2

2A
,

λ− =
u1(A + B) −

[
u2
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]1/2

2A
,




(A 2)

and the corresponding eigenvectors:

(0, 0, 0, 1),
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Consequently, the relationships between the variables on the characteristics with
dr/dt = λ are as follows:
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dt, (A 4)
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Further manipulation yields a convenient boundary condition for v1. Since on λ2:
dr/dt = u1, (A 5) can be rewritten as:

dv1

dr
+

v1

r
= −2. (A 8)

With the initial condition v1 = 0 at r = rinit, this has the solution

v1 = −r

[
1 −

(rinit

r

)2
]

. (A 9)

In particular, at the nose

v1(r = rN ) = −rN (t)

[
1 −

(
1

rN (t)

)2
]

. (A 10)
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